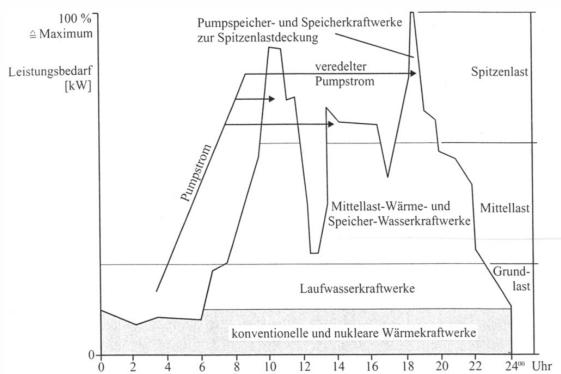
Forschungsstelle Neue Energien und Recht TU Chemnitz/TU Bergakademie Freiberg e.V.

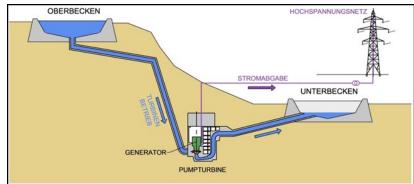
Die Rolle von Pumpspeicherwerken zur Verstetigung fluktuierender Erneuerbarer Energien

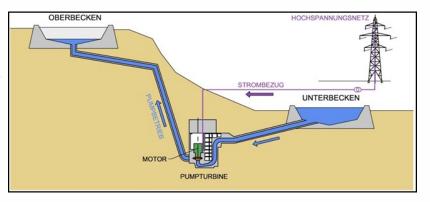
Matthias Beisler 28/02/2013

Vorstellung der Präsentationsinhalte

- Energiewirtschaftliche Randbedingungen Überblick künftige Szenarien der Energieversorgung und die prognostizierte Rolle der Energiespeicherung
- Mögliche Beiträge von PSW in Zuge der Integration von EE
- Projektplanung Wirtschaftlichkeitsuntersuchung bei PSW
- Projektbeispiel Rentabilitätsprüfung eines (dezentralen) PSW

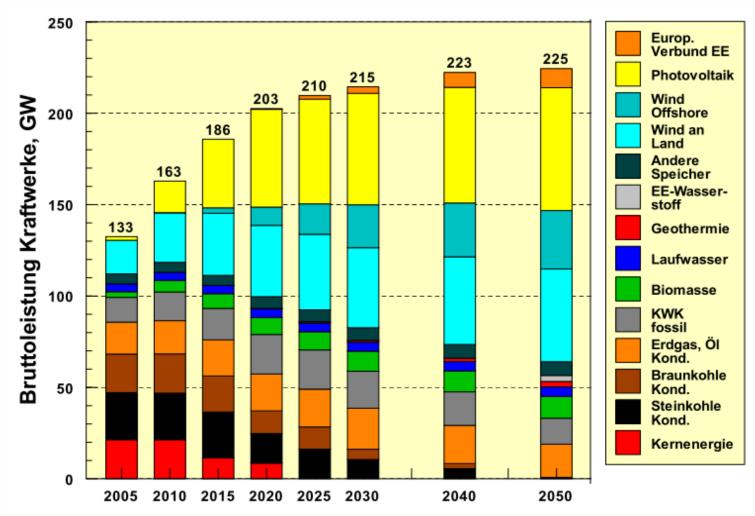

Betriebsweise von Pumpspeicherwerken entsprechend der Tagesganglinie des elektrischen Leistungsbedarfs



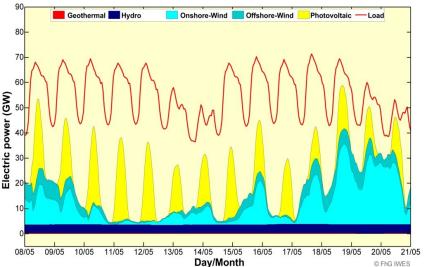

Wirkleistung:

Speicherung von Überschussenergie zu

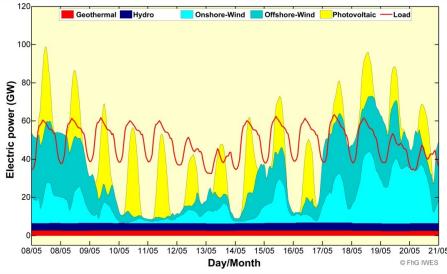
Schwachlastzeiten und Einspeisung zu Zeiten hohen Bedarfs (Ausgleich der tägl. Bedarfsspitzen).



Prognostizierte Entwicklung der Stromerzeugungskapazitäten



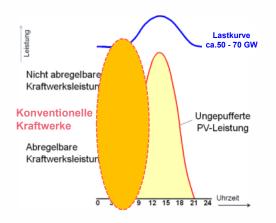
Quelle: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Angaben basierend auf vorläufigem Szenario A für BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) Leitstudie 2011, Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global


Leistungsbereitstellung ungesteuert, ohne Ausgleich durch Speicher und Lastmanagement (Beisp.: 2-Wochen-Verlauf im Mai)

Jahr 2050: EE-Jahresanteil ca. 85%

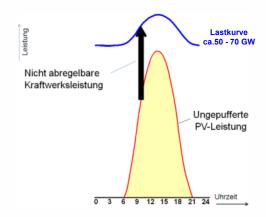
Quelle: Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES) Leitstudie 2010

Wachsende Anforderungen an Energiespeicher durch vermehrte Lastwechsel, erhöhte Leistungsgradienten, An- und Abfahrt, Ökonomie etc.

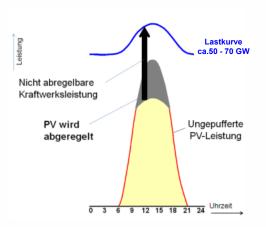

Wachsende EE-Überschüsse erfordern neben leistungsfähigen Netzen auch eine Langzeitspeicherung

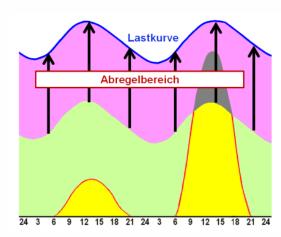
- ► Ausbau der Netze erforderlich sowie Schaffung von Kurzzeitspeichern (z.B. PSW)
- ▶ PSW in Deutschland für diese Zwecke nur bedingt geeignet (mögl. Speichertechnologien: Wasserstoff und Methan).

Zusammenspiel Stromverbrauch, konventionelle Kraftwerksleistung und Solarstromerzeugung


Lastkurve ca.50 - 70 GW

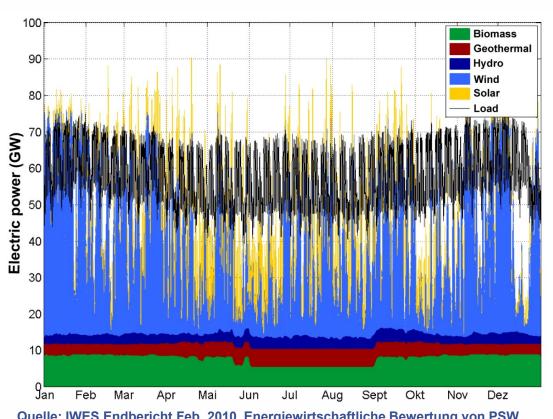
Nicht abregelbare Kraftwerksleistung

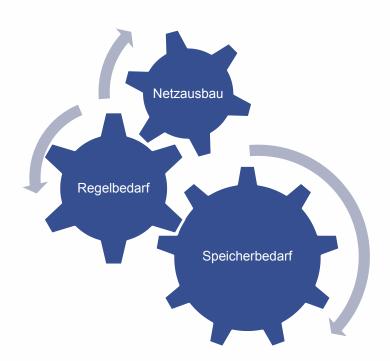

Abregelbare Kraftwerksleistung


...abgeregelt

0 3 6 9 12 15 18 21 24 Uhrzeit

Quelle Grafiken: SFV e.V.



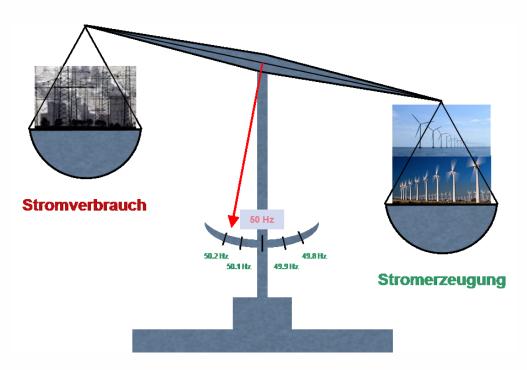

- ⇒ Ein weiterer Zubau ungepufferter PV-Anlagen erhöht die einspeisbare Solarstrommenge nur noch unwesentlich
- ⇒ Steuerungsmaßnahmen müssen frühzeitig getroffen werden, weit bevor die PV-Leistung die Lastkurve erreicht
- ⇒ Wenn mehrere EE gleichzeitig Strom liefern, ist der Abregelbereich schnell erreicht
- Es ist eine Glättung der fluktuierenden Einspeisung und Ihre Anpassung an den Verlauf der Lastkurve erforderlich

Verbleibende Residuallast bei Simulation der Einspeisung erneuerbarer Energien

Last und kumulierte EE Einspeisung für das Jahr 2050

Quelle: IWES Endbericht Feb. 2010, Energiewirtschaftliche Bewertung von PSW

▶ Bis zum Jahr 2050 ist ein signifikanter Anstieg von Stromüberschüssen zu erwarten



Pumpspeicherwerke liefern Systemdienstleistungen

BERATENDE INGENIEURE

Der Betrieb elektrischer Netze erfordert zu jeder Zeit ein Gleichgewicht zwischen Erzeugungsleistung und Verbrauch

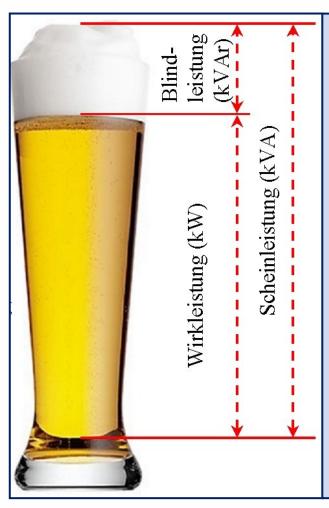
⇒ die Bilanz muss zu jedem Zeitpunkt im Gleichgewicht stehen

► Regelleistungsbedarf: Ausgleich kurzfristiger (ungeplanter)
Abweichungen der Abnahme vom Stromangebot.

Systemdienstleistungen:

Regelleistung

Bereitstellung aufgrund des Ausfalls volatiler Energieformen, Stabilisierungsfunktion bei Netzstörungen.


- <u>Primärregelung</u> ⇒ zur Regelung der Frequenz, automatisch innerhalb weniger Sekunden wirksam (nach 2 s bis 30 s)
- <u>Sekundärregelung</u> (individuelle Reservehaltung)⇒ Leistungsanpassungen innerhalb von 15 min
- Minutenreserve bzw. Tertiärregelung ⇒ kurzfristige Anforderung durch den Netzbetreiber (manuell und/oder automatisch)
- Bereitstellung <u>Blindleistung</u> bzw. Blindleistungskompensation, Blindleistungs- Spannungsregelung

Schwarzstartfähigkeit

Scheinleistung, Wirkleistung, Blindleistung

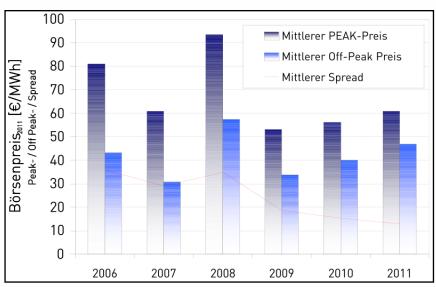
Scheinleistung = Anschlussleistung

- ⇒ ergibt sich aus den Effektivwerten von elektrischer Spannung U und elektrischer Stromstärke I [V·A]
- ⇒ Entscheidend für die Belastung der elektrischen Leitungsnetze Ursache für Blindleistung:

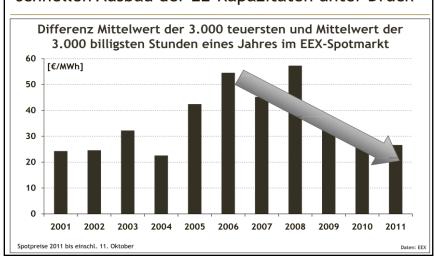
Zeitliche Verschiebung zwischen Strom und Spannung = Phasenverschiebung

- Nur die Wirkleistung ist nutzbare Leistung mit der sich Maschinen antreiben lassen oder Lampen zum Leuchten gebracht werden können.
- Blindleistung dagegen verbraucht sich nicht und kann auch keine Arbeit leisten.
- Blindleistung belastet (wie auch Wirkleistung) das elektrische Leitungsnetz, welches auf die Gesamtbelastung (Scheinleistung) ausgelegt sein muss.
- Blindleistung wird nicht verbraucht, muss aber trotzdem vom Stromlieferanten bereitgestellt werden.

In PSW verwendete Synchrongeneratoren können durch entsprechende Steuerung ihres Erregerstroms Blindleistung zur Verfügung stellen.



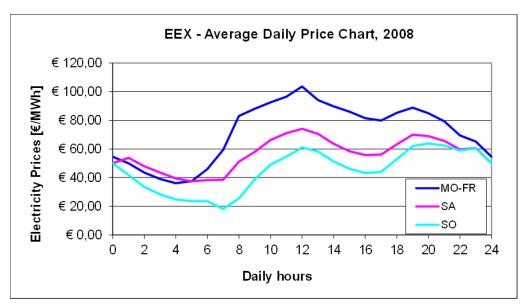
Bedeutung von Pumpspeicherwerken hinsichtlich der Integration von EE und Umsetzung der Energiewende

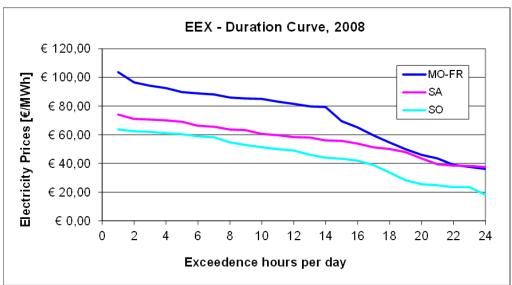

- Derzeit (noch) einzige verfügbare großtechnische Form der wirtschaftlichen Stromspeicherung (Umwälzwirkungsgrad ca. 75 80%)
- Technologie effizient und bewährt sowie zuverlässig beherrschbar
- Wichtiger Beitrag zur Deckung der Spitzenlast
- PSW können einen erheblichen Beitrag zur CO₂ freien Stromerzeugung leisten
- Stabilisierung der Strom- Übertragungsnetze (Speicher und PSW sind Netzdienstleister)
- Keine Abhängigkeit von schwankenden und tendenziell steigenden Brennstoffkosten
- Hohe Kraftwerks Lebensdauer bei vergleichsweise geringen Betriebskosten

Peak - Off Peak Preisproblematik

Quelle: Vortrag EnBw 2011 basierend auf Daten der EEX

Peakpreise und Spreads geraten durch den schnellen Ausbau der EE-Kapazitäten unter Druck


Anforderungen an PSW zur Integration von EE:


- Kurz- und Langzeitspeichermöglichkeit
- Auslegung der Anlagen auf größtmögliche Flexibilität (max. Regelfähigkeit im Pumpund Turbinenbetrieb)
- Rasche Reaktionszeiten zur Gewährleistung von Primär-, Sekundär, Tertiärregelung und Minutenreserve

Problem:

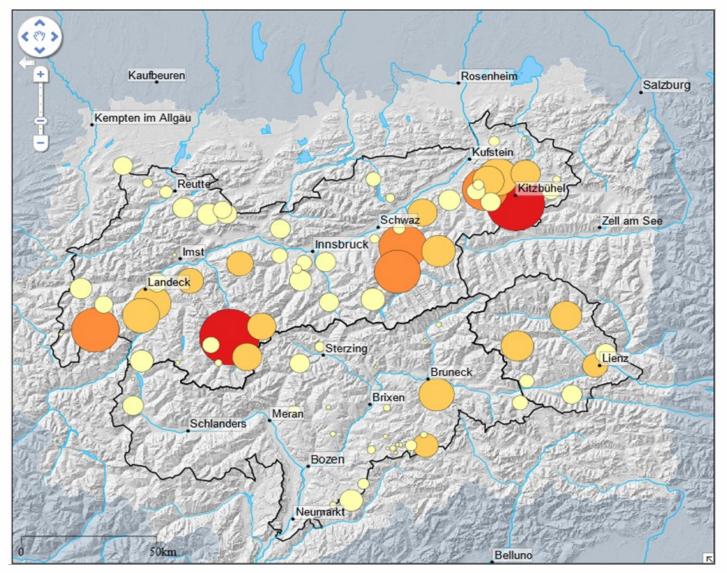
- ► Fehlendes langfristiges Marktmodell
- **►** Unzureichende Planungssicherheit

Peak - Off Peak Preisproblematik

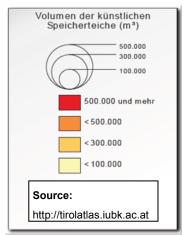
Auslegung des PSW

täglich 6h Turbinenbetrieb

Vergütung von ca. 90 €/MWh

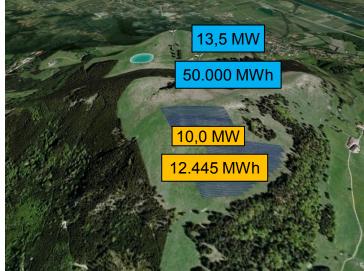

täglich 6h Pumpbetrieb:

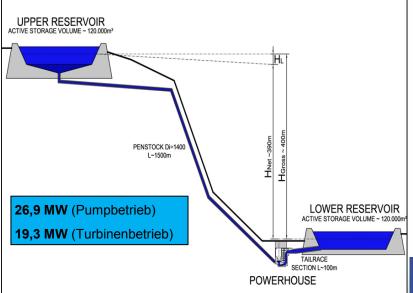
Stromkosten von ca. 45 €/MWh


Spread (Peak-Off Peak) 2:1

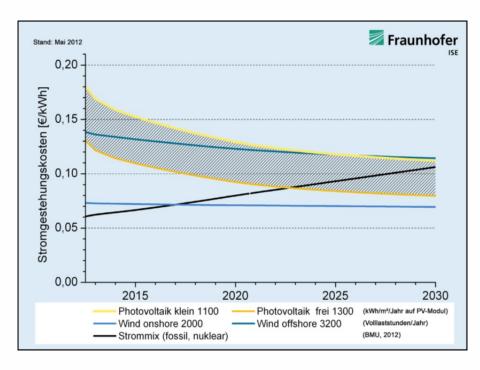
Potential PSW – Künstliche Speicherteiche

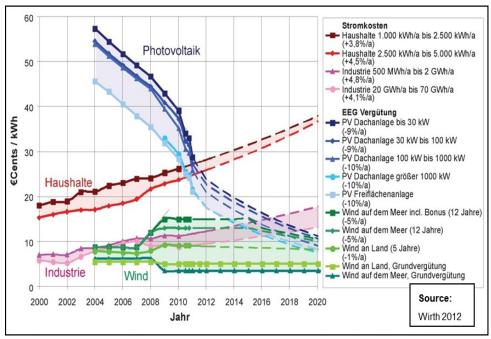
► Gesamtvolumen von ca. 7.5 Mio. m³


Potential PSW – Künstliche Speicherteiche



Integration Obb in Hybridkraftwerk (Stromerzeugung/-speicherung)





Grundlage der Wirtschaftlichkeitsuntersuchung Stromgestehungkosten - Strombezugskosten

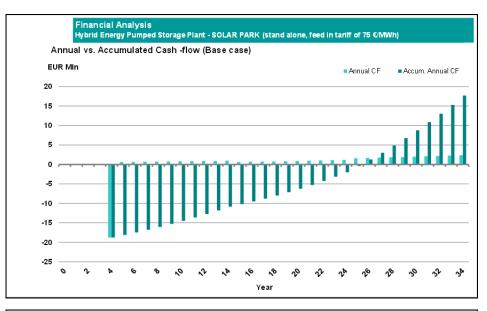
Start der Stromproduktion:

2018

75 €/MWh (Richtwert zur Bestimmung der Projekterträge)

Deckung von Eigenbedarf:

 \Rightarrow


 \Rightarrow

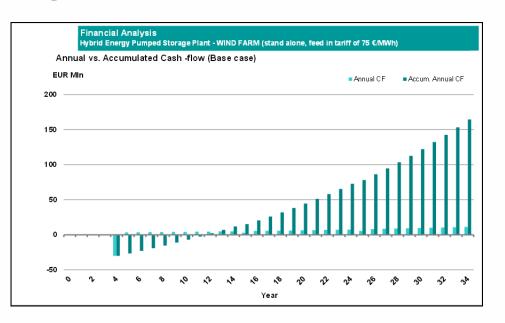
140 €/MWh (Jahresbedarf für Schigebiet ca. 15.000 MWh)

Ergebnisse der Wirtschaftlichkeitsuntersuchung (Solar)

Projektlaufzeit:	30 Jahre
Projektlaufzeit:	30 Jah

Bauzeit: 1 Jahr

Kalkulationszinssatz: 6 %


	IRR	NPV	B/C Ratio
Best Case	4,2 %	-3,1	0,83
Mean Case	3,8 %	-3,8	0,80
Worst Case	3,0 %	-5,9	0,72

						ase)									
EUR Min										■ A	nnual CI	•	Accum	. Annua	al C
40 ——															
30 ——															
20 —															
												٠.	ш	Ш	
10 —												_	_	_	_
											e II.	ш	ш	ш	
0		777	i i i	77	rit	TT	TT	1 -1-		4	Ц	Ц	Ц	Щ	
		Ш	П	П	Ш	TT	TT	rv	 _	4,4,	11	Щ	<u> </u>	Щ	
-10		П	П	П	Ш	TT	ŢŤ	Tr. for		4,4,	11	11	11	Щ	
0	1			П	Ш	TT	TT	Tr Tr	<u></u>	4,4,	1,1,	11	11	11	

	IRR	NPV	B/C Ratio
Best Case	6,0 %	0,1	1,00
Mean Case	5,7 %	-0,6	0,97
Worst Case	4,7 %	-2,7	0,87

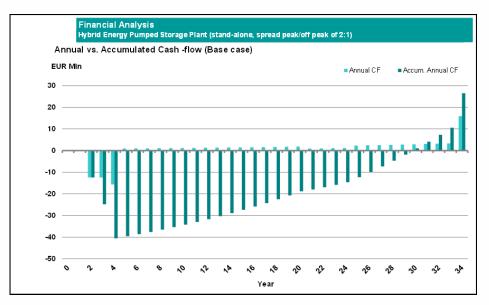
Ergebnisse der Wirtschaftlichkeitsuntersuchung (Wind)

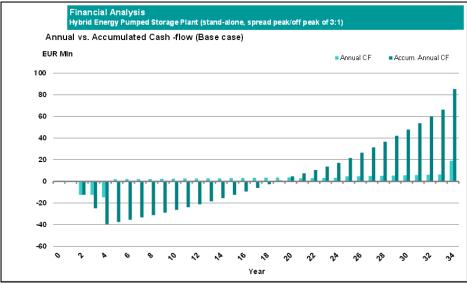
Projektlaufzeit: 30 Jahre

Bauzeit: 1 Jahr

Kalkulationszinssatz: 6 %

	IRR	NPV	B/C Ratio
Best Case	15,6 %	34,8	2,32
Mean Case	14,9 %	33,6	2,23
Worst Case	13,2 %	30,3	1,99


Kosten/Erträge Solar:


Installed Capacity	Annual Power	CAPEX	Annual O&M Costs
[MW]	[MWh]	[€]	[€]
10	12.445	18.750.000	300.000
10	12.445	18.750.000	300.000

Kosten/Erträge Wind:

Installed Capacity	Annual Power	CAPEX	Annual O&M Costs
[MW]	[MWh]	[€]	[€]
12 E	E0 000	20,000,000	280.000
	• •	[MW] [MWh]	[MW] [MWh] [€]

Ergebnisse der Wirtschaftlichkeitsuntersuchung (PSW)

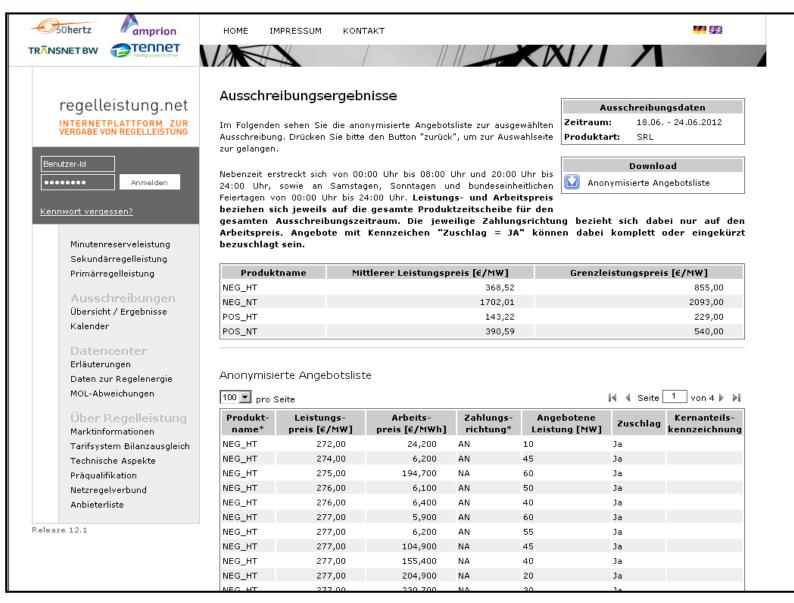
Projektlaufzeit: 30 Jahre

Bauzeit: 3 Jahre

Planung & Genehmigung 2 Jahre

Kalkulationszinssatz: 6 %

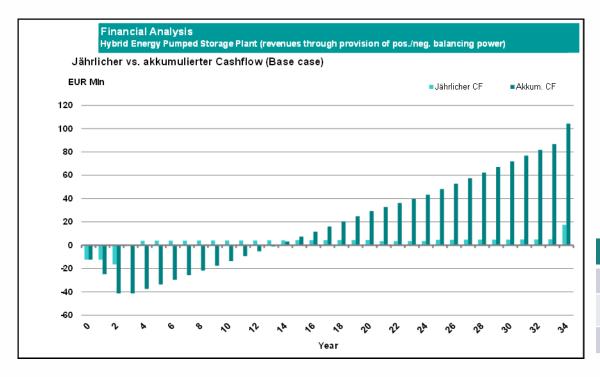
	IRR	NPV	B/C Ratio
Best Case	3,0 %	-11,6	0,68
Mean Case	2,4 %	-14,8	0,62
Worst Case	1,3 %	-23,0	0,52


Weiteres Optimierungspotential:

- Kosteneinsparungen durch Bestehende Infrastruktur (Obb)
- · Ertragssteigerung durch natürlichen Zufluss zum Obb

	IRR	NPV	B/C Ratio
Best Case	7,3 %	6,0	1,16
Mean Case	6,6 %	2,7	1,07
Worst Case	5,0 %	-5,5	0,89

DCF Modell, Sekundärregelung - Vergütung


Ergebnisse der Wirtschaftlichkeitsuntersuchung

Wirtschaftlichkeit des PSW bei

Vergütung der Bereitstellung von

Regelleistung:

Problem:

Derzeit kein Marktmodell für Systemdienstleistungen (Regelleistung, Blindstrom, Schwarzstartfähigkeit etc.)!

	IRR	NPV	B/C Ratio
Best Case	10,7 %	18,0	1,50
Mean Case	8,0 %	10,9	1,25
Worst Case	6,3 %	2,1	1,04

Wirtschaftlichkeitsuntersuchung Planung, Bau u. Betrieb der Anlage als Hybridkraftwerk

- Kosteneinsparungen bei Planung und Bau (Erschließung, Netzanbindung etc.)
- Effektives Stromerzeugungsmanagement durch die Möglichkeit zur Speicherung
- Nutzung von Synergien i.V.m. mit Pistenbeschneiung

Eigenbedarf: 15 GWh/Jahr

Erzeugung Solar: 12,5 GWh/Jahr

Erzeugung Wind: 50 GWh/Jahr

Annahme: 70% des jährl. Eigenbedarfs (10,5 GWh) kann durch

eigene Stromerzeugung abgedeckt werden

	IRR	NPV	B/C Ratio
Best Case	11,2 %	9,7	1,59
Mean Case	10,7 %	9,1	1,53
Worst Case	9,4 %	7,2	1,38

EUR Min		
		■ Annual CF ■ Accum. Annu
40 ————————————————————————————————————		
30 —		
		- 1
20		
10		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		,,,,,,,,,,
,	1111111	
-10	<u> </u>	

	IRR	NPV	B/C Ratio
Best Case	7,4 %	2,3	1,14
Mean Case	7,0 %	1,7	1,10
Worst Case	5,9 %	-0,1	0,99

Zusammenfassung - Energiewirtschaftliche Randbedingungen

- Auf der Erzeugerseite ist künftig mit einer großen Fluktuationsbandbreite und ausgeprägten Leistungsgradienten zu rechnen.
- Verändertes Anforderungsprofil an PSW hinsichtlich flexibler Leistungsbereitstellung (häufige Umschaltvorgänge, erforderliche Regelfähigkeit, rasche Reaktionszeiten, längere Einsatzzeiten, etc.).
- Rückläufige der Preise an den Strombörsen in den vergangenen Jahren aufgrund des massiven Zubaus von Wind- und Solarstrom.
- Rückgang der Preisspanne zwischen Peak und Peak-off Preisen (mittelfristig ist mit einem erneuten Anstieg zu rechnen).
- Unzureichendes Marktmodell für Systemdienstleistungen
- ► Lange Projekt Vorlaufzeiten erfordern sowohl mutige als auch fundiert begründete unternehmerische Entscheidungen
- ➤ Aus Investorensicht wirken die hohen Anfangsinvestitionen, die langen Vorlaufzeiten und Amortisationsdauern hemmend angesichts der **unklaren politischen Rahmenbedingungen** (Förder- und Entgeltregime, langfristige Marktzuschnitte, Entwicklung der Netze)
- Orientierung am gesamtwirtschaftlichen Nutzen erforderlich (Schaffung entsprechender politischer Rahmenbedingungen)
- ⇒ erhebliche Auswirkungen auf Planung, Bau und Betrieb von Pumpspeicherwerken

Ökonomische und technische Aspekte bei der Planung von Pumpspeicherkraftwerken

Vielen Dank für Ihre Aufmerksamkeit!

